297 research outputs found

    The copositive completion problem: Unspecified diagonal entries

    Get PDF
    In [L. Hogben, C.R. Johnson, R. Reams, The copositive matrix completion problem, Linear Algebra Appl. 408 (2005) 207–211] it was shown that any partial (strictly) copositive matrix all of whose diagonal entries are specified can be completed to a (strictly) copositive matrix. In this note we show that every partial strictly copositive matrix (possibly with unspecified diagonal entries) can be completed to a strictly copositive matrix, but there is an example of a partial copositive matrix with an unspecified diagonal entry that cannot be completed to a copositive matrix

    Spectral graph theory and the inverse eigenvalue problem of a graph

    Get PDF
    Spectral Graph Theory is the study of the spectra of certain matrices defined from a given graph, including the adjacency matrix, the Laplacian matrix and other related matrices. Graph spectra have been studied extensively for more than fifty years. In the last fifteen years, interest has developed in the study of generalized Laplacian matrices of a graph, that is, real symmetric matrices with negative off-diagonal entries in the positions described by the edges of the graph ( and zero in every other off-diagonal position).The set of all real symmetric matrices having nonzero off-diagonal entries exactly where the graph G has edges is denoted by S( G). Given a graph G, the problem of characterizing the possible spectra of B, such that B. S( G), has been referred to as the Inverse Eigenvalue Problem of a Graph. In the last fifteen years a number of papers on this problem have appeared, primarily concerning trees.The adjacency matrix and Laplacian matrix of G and their normalized forms are all in S( G). Recent work on generalized Laplacians and Colin de Verdiere matrices is bringing the two areas closer together. This paper surveys results in Spectral Graph Theory and the Inverse Eigenvalue Problem of a Graph, examines the connections between these problems, and presents some new results on construction of a matrix of minimum rank for a given graph having a special form such as a 0,1-matrix or a generalized Laplacian

    Matrix completion problems for pairs of related classes of matrices

    Get PDF
    For a class X of real matrices, a list of positions in an n×n matrix (a pattern) is said to have X-completion if every partial X-matrix that specifies exactly these positions can be completed to an X-matrix. If X and X0 are classes that satisfy the conditions any partial X-matrix is a partial X0-matrix, for any X0-matrix A and ε\u3e0, A+εI is a X-matrix, and for any partial X-matrix A, there exists δ\u3e0 such that A−δĨ is a partial X-matrix (where Ĩ is the partial identity matrix specifying the same pattern as A) then any pattern that has X0-completion must also have X-completion. However, there are usually patterns that have X-completion that fail to have X0-completion. This result applies to many pairs of subclasses of P- and P0-matrices defined by the same restriction on entries, including the classes P/P0-matrices, (weakly) sign-symmetric P/P0-matrices, and non-negative P/P0-matrices. It also applies to other related pairs of subclasses of P0-matrices, such as the pairs classes of P/P0,1-matrices, (weakly) sign-symmetric P/P0,1-matrices and non-negative P/P0,1-matrices. Furthermore, any pattern that has (weakly sign-symmetric, sign-symmetric, non-negative) P0-completion must also have (weakly sign-symmetric, sign-symmetric, non-negative) P0,1-completion, although these pairs of classes do not satisfy condition (3). Similarly, the class of inverse M-matrices and its topological closure do not satisfy condition (3), but the conclusion remains true, and the matrix completion problem for the topological closure of the class of inverse M-matrices is solved for patterns containing the diagonal

    Graph theoretic methods for matrix completion problems

    Get PDF
    A pattern is a list of positions in an n×n real matrix. A matrix completion problem for the class of Π-matrices asks whether every partial Π-matrix whose specified entries are exactly the positions of the pattern can be completed to a Π-matrix. We survey the current state of research on Π-matrix completion problems for many subclasses Π of P0-matrices, including positive definite matrices, M-matrices, inverse M-matrices, P-matrices, and matrices defined by various sign symmetry and positivity conditions on P0- and P-matrices. Graph theoretic techniques used to study completion problems are discussed. Several new results are also presented, including the solution to the M0-matrix completion problem and the sign symmetric P0-matrix completion problem
    • …
    corecore